

THG-Abschätzung und Erweiterung eines THG-Bilanzierungsansatzes

Dr. R. Hommel, Dr. K. Jäkel, Dr. C. Peter, M. Erfurth, F. Winkhart

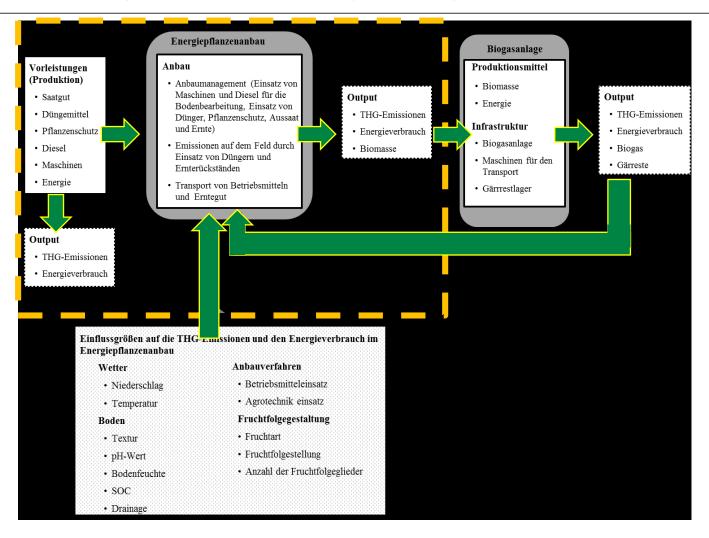
Gliederung

- Zielstellung/Ansatz
- Durchführung via MiLA
- Ergebnisse
- Ausblick

Durchführung

Ergebnisse

Ausblick


Zielstellung

- Ableitung und Bewertung von praxistauglichen THG-Minderungsmaßnahmen durch effizientes Management → Fruchtfolge, Düngeeinsatz, Berücksichtigung standortspezifischer Faktoren
- Bisherige Realisierung via MiLA-Tool (ohne Humusbilanz)

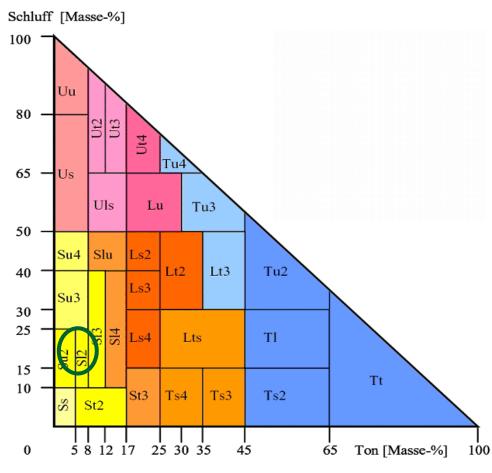
Ansatz

- MiLA 3.0 Model for integrated LCA in Agriculture (Peter et al. 2017) → EVA
- basiert auf (ISO 14040/44 und VDI 4600, Hillier et al. 2011 THG-Emissionsberechnung), N₂O Ansatz nach Stehfest und Bouwman 2006
- THG Emissionen nach GWP 100 (Myhre et al. 2013 und kumulierter Energieaufwand (cradle to farm gate) über die gesamte Fruchtfolge

Durchführung

Ergebnisse

Ausblick


Standortparameter Trossin

Textur - DIN 11277:2002 Lehmsande

Ackerzahl 30 - 35

Mg/P↑, Ct/K↓

pH = 5.9 (ca. 15 Jahre)

Durchführung

Ergebnisse

Ausblick

Versuchsplan Trossin 2021

W. Triticale	W. Roggen	W. Triticale	W. Roggen	W. Roggen	W. Roggen	W. Roggen	W. Roggen
Korn	Korn	Korn	Korn	Korn	Korn	Korn	Korn
4a	1b	4b	2b	3b	3a	1a	2a
W. Roggen	W.:Roggen	W. Roggen	W. Roggen	W. Triticale	W. Roggen	W. Roggen	W. Triticale
Korn	Korn	Korn	Korn	Korn	Korn	Korn	Korn
3a	3b	2a	1a	45	2b	1b	4a
W. Roggen	W Triticate	W. Triticale	W. Roggen	W. Roggen	W. Roggen	W. Roggen	W. Roggen
Korn	Korn	Korn	Korn	Korn	Korn	Korn	Korn
1a	4b	4a	3b	1b	2a	3a	2b
W. Roggen	W. Roggen	W Raggen	W. Roggen	W. Triticale	W. Roggen	W. Roggen	W. Triticale
Korn	Korn	Korn	Korn	Korn	Korn	Korn	Korn
2a	2b	15	3a	4a	1a	3b	4b

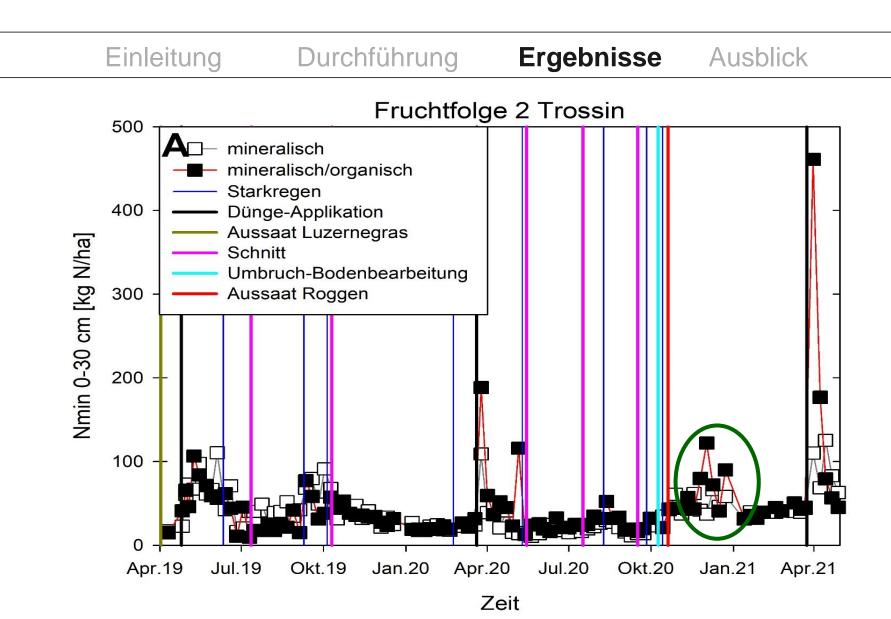
mineralisch/organisch
mineralisch

Durchführung

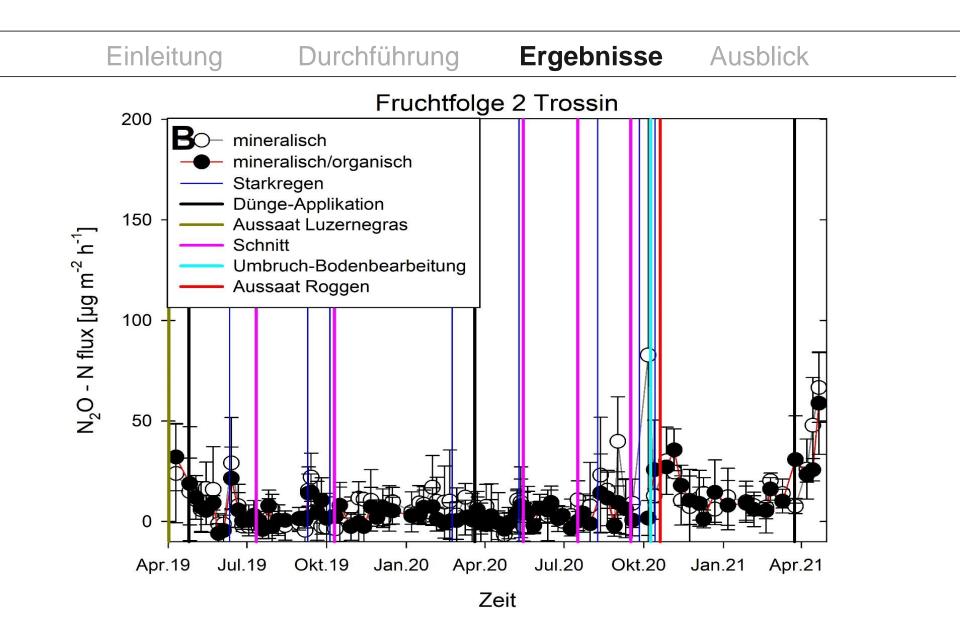
Ergebnisse

Ausblick

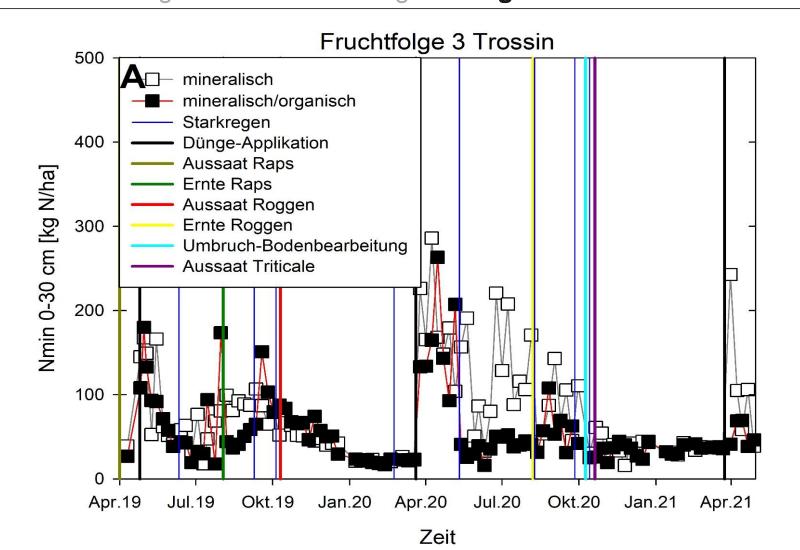
Gesamt-Fruchtfolge 2018-2021

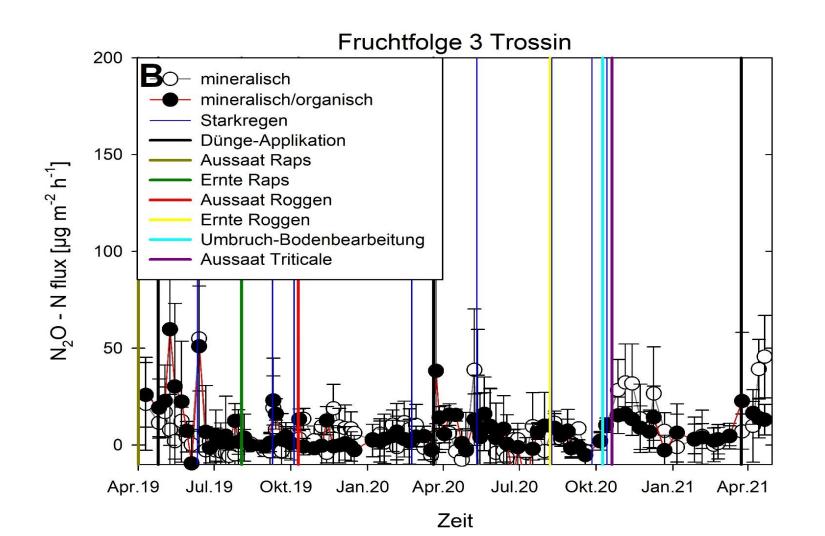

FF 2: Luzernegras-Winterroggen

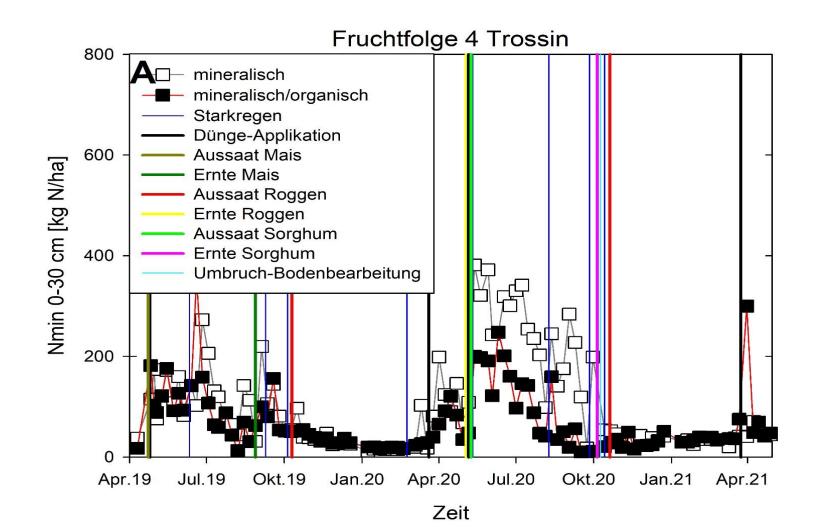
FF 3: Raps-Winterroggen-Triticale

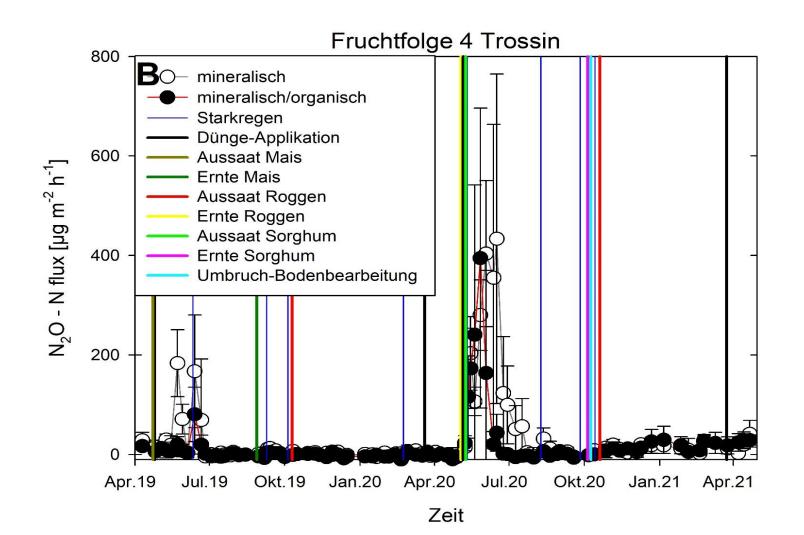

FF 4: Senf-Mais-Grünroggen-Sorghum-Winterroggen

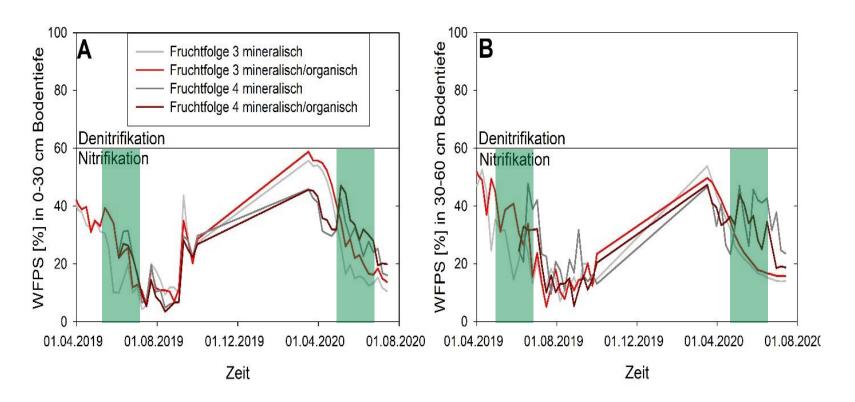
Konventioneller Landbau - gute N - Berechnungsfolge in kg N/ha		BESyD 2021 V09/SN/Lw	Konventioneller Landbau - N - Berechnungsfolge in kg	_	T10.0 (00 T.T
Betrieb: MASTER	04880 Trossin	09.03.2021	Betrieb: MASTER	04880 Trossin	09.03.2021
4a - 4 1 ha lehmiger Sand D Nahrung nitratbelastete		20.10.2020 ng in t/ha bzw. m³/ha			20.10.2020 anische Düngung in t/ha bzw. m³/ha 2020 Gülle normal/ Rind 17,0
N-Bedarfsermittlur N-Bedarf Pflanze Ertragsdifferenz 70 dt/ha Ert.niveau 55 dt/ha Betrieb -15 dt/ha Diffe	190 -23 167 -23 167	ngsempfehlung	N-Bedarf Pfla Ertragsdiffer	anze 190 1	iterte N-Düngungsempfehlung 90 67
Humusgehalt/Bodenvorrat schwach humos (<2 %) Boden-Klima-Raum 104-trocken-warme diluviale Böden des ostdeutschen Tieflande 20 m N-Bedarf Pflanze/Gabe 18 % Steinigkeit Nmin 0-60 cm (Richtwert) 70 cm Bodentiefe Nmin 60-90 cm (Richtwert) Vorfrucht/Nachlieferung Vorkultur: Winterroggen Pflanzenentwicklung Vegetationsbeginn	0 167 -17 150 -18 0 150 1.G. 100 -22 145 -19 81 -3 -2 143 0 81 -2 0 143 0 81 0	2. G. 3. G. 50 0 47 45 0 0 0 49	Humusgehalt/Bodenvor schwach humos (<2 %) Boden-Klima-Ra 104-trocken-warme diluviale Böden des ostdeutschen T 20 m N-Bedarf Pflanze/G 18 % Steinigkeit Nmin 0-60 cm (Richtwe Vorfrucht/Nachliefer Vorkultur: Winterroggen Pflanzenentwickly Vegetationsbeg	aum -17 15 Tieflandes = NN 0 15 -1. Gabe 10 rert) -22 145 -19 8 rert) -2 143 0 8 rung 0 143 0 8	50 G. 2. G. 3. G.
org, Düngung im Vorjahr org, Düngung zur Vorfrucht Erntereste Gemüse/Grünmasse Zw.frucht/Frucht org, Düngung Herbst Runden, Begrenzung nach DüV, WSG(Sz1) N-Düngebedarf als standortbezogene Obergrenze(DüV) N-Empfehlung [kgN/ha] geplante org, Düngung Frühjahr / später verbleibende N-Düngungsempfehlung/Gabe kgN/ha	0 143 0 73 0 0 73 0 73 0 73 0 73 0 73 0 73	49 0 0 0 49 0 0 0 49 0 0 0 0 0 0 0 0 0 0	org, Düngung im Vorj org, Düngung zur Vorfru org, Düngung zur Vorfru Erntereste Gemüse/Grünmasse Zw.frucht/Fru org, Düngung Hei Runden, Begrenzung nach DüV, WSG(S N-Düngebedarf als standortbezoge Obergrenze(DüV) N-Empfehlung [kgN/	ucht ucht 0 138 0 7 ucht 0 138 0 7 urbst 0 7 Sz1) 0 138 -1 7 ene 138 12 item 0 7	72 0 48 0 0
höherer N-Düngebedarf auf Grund nachträglich eintretender Umstände nach Maßgabe der zuständigen Landesstelle:	120 0 Datum/Erläuterung	0 0	verbleibende N-Düngungsempfehlung/Gabe kgN, höherer N-Düngebedarf auf Grund nachträglich eintretender Umstände nach Maßgabe der zuständigen Landesstelle:	120 Datum/Erläu	0 0
*) Ergebnisse vom Nitratschnelltes	t bzw. N-Tester (zum Eintragen):		*) Ergebnisse vom Nitratsc	chnelltest bzw. N-Tester (zum Eintra	gen):











Durchführung

Ergebnisse

Ausblick

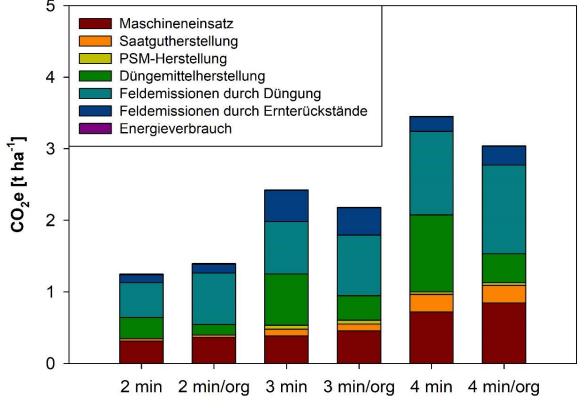
WFPS A) 0 – 30 cm Bodentiefe, B) 30 – 60 cm Bodentiefe für Fruchtfolge 3 und 4

Übersicht: CO₂e [t ha⁻¹] Bilanzierung je Fruchtfolge (04/2019-12/2020)

Fruchtfolge/Düngevariante				
	Messung	Stehfest und Bouwman 2006		
2 min	0,57	0,22		
2 min/org	0,32	0,14		
3 min	0,39	0,63		
3 min/org	0,41	0,35		
4 min	2,25	1,47		
4 min/org	1,29	0,41		

Übersicht: CO₂e [t ha⁻¹] Bilanzierung nach Stufe 2, je Fruchtfolge (04/2019-12/2020)

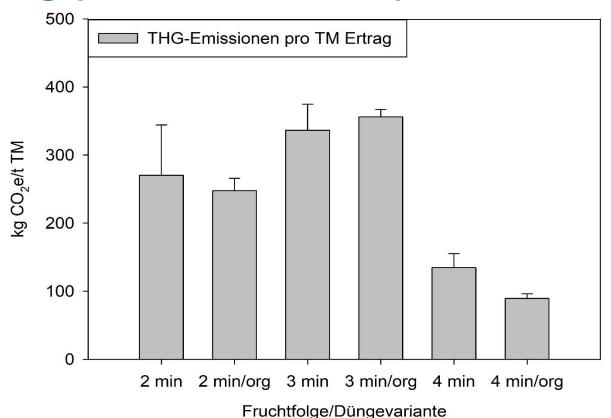
Fruchtfolge/Düngevariante	Stufe 2 (MiLA)
2 min	1,25
2 min/org	1,41
3 min	2,43
3 min/org	2,18
4 min	3,45
4 min/org	3,04



Einleitung Durchführung

Ergebnisse

Ausblick


Gesamt-THG-Emissionen CO₂e [t ha⁻¹] via MiLA in Trossin für Fruchtfolge 2 - 4 (04/2019 - 12/2020)

Fruchtfolge/Düngevariante

Gesamt-THG-Emissionen CO₂e [t ha⁻¹] via MiLA je TM-Ertrag (04/2019 – 12/2020)

Berücksichtigung Humusbilanz

VDLUFA 2014

z.B. Mais **humuszehrend** 560 - 1040 Häq ha⁻¹a⁻¹ \rightarrow ca. 2.1 - 3.8 CO₂e [t ha⁻¹a⁻¹] z.B. Luzernegras **humusmehrend** 400 - 800 Häq ha⁻¹a⁻¹ \rightarrow ca. 1.5 - 2.9 CO₂e [t ha⁻¹a⁻¹]

- Implementierung z.B. BEK, HUNTER

Durchführung

Ergebnisse

Ausblick

0.13 0.83 188.40

kg CO_{2e}/ha

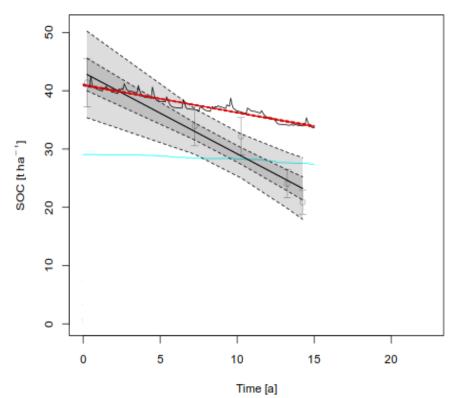
0.00 mid

158.37

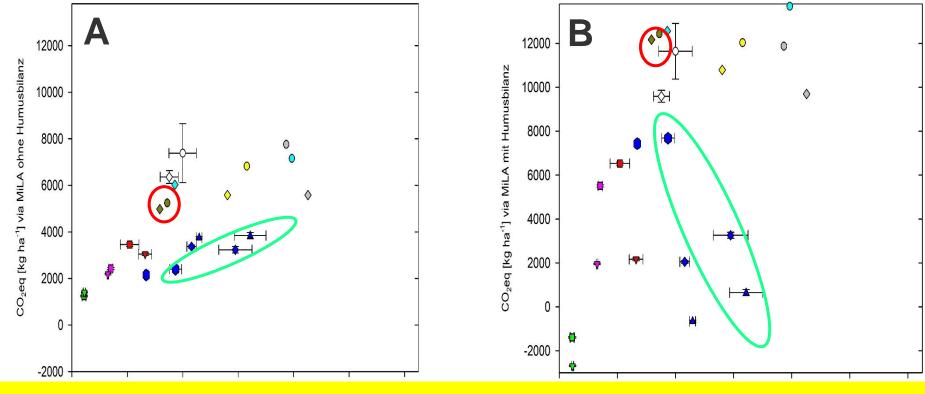
sch

MiLA -> ca. 3.3 t/ha (ca. 2/3 durch Humus-

BEK -> ca. 3.4 t/ha abbau)


Notwendigkeit der Berücksichtigung von Humusallokation in THG-Billanzierung

Herai	anzurecnnenge Nanrstofflieferung aus Beweigung:			_	6 P _N 1: CO ₂ -Bindung d	lurch Humusauft
	anzurechnende Namstofflererung aus Beweidung: anzurechnender N		kg N/ha		7 P _N 2: CO _{2e} -Ersatzwe	
	anzurechnendes P ₂ O ₅		kg P₂O₅/ha			A CONTRACTOR OF A STREET
iC	anzurechnendes K ₂ O	0	kg K ₂ O/ha		P _N 1 bis P _N 2: Summe THG-Gutschrif	
Kuratoriu	Energie und Sonstiges:)	9 Treibhausgasemissionen für das	
12	Dieselverbrauch einschließlich Ernte	52.79	I /ha	-	P _F 1 bis P _N 2: Summe	THG für das H
	Saatgutverbrauch		kg/ha		1 Trockenmasseertrag	
is	Pflanzenschutzmittelverbrauch	3	l bzw. kg/ha			1
ie					2 CO ₂ -Fußabdruck	Silomais
	2. Betriebssspezifische Emissionsfaktoren und Begleitwerte				3 Humussaldo	Silomais
is	Ps1: NoO-Emissionen aus NH2-Verlusten bei der Düngung mit Wirtsch	naftsdüngern				0


				ky CO _{2e} /IIa	
9	6 P _N 1: CO ₂ -Bindung	durch Humusaufbaupotential der Nebenernteprodukte		0.00	
9	7 P _N 2: CO _{2e} -Ersatzwert der Nährstofflieferung für die Folgefrucht			0.00	
9	P _N 1 bis P _N 2: Summe THG-Gutschrift für Nebenernteprodukte			0.00	
1	Treibhausgasemissionen für das Hauptprodukt				
,	P _F 1 bis P _N 2: Summe THG für das Hauptprodukt kg CO _{2e} /ha			3,424.65	
C	Trockenmasseertrag Hauptprodukt		kg TM/ha	13.02	
(2 CO ₂ -Fußabdruck	Silomais	kg CO _{2e} /kg TM	263.030	
0	3 Humussaldo	Silomais	kg Humus-C/ha	-560.00	

SOC (2005 - 2020) für Fruchtfolge 2 mineralisch

Verlauf SOC [t ha⁻¹] Trossin mit RothC allometrische Fkt. IPCC und Messwerten (grauer Bereich Konfidenzintervall der linearen Regression)

Fazit: Berücksichtigung der Humusbilanzierung nach VDLUFA→ Verschiebung der Fruchtfolgen z.B. Anstieg der CO₂e für Mais in Selbstfolge, generelle Abnahme (hoch signifikant) der CO₂e bei organischer und reduzierter mineralischer Düngung

- mineralischer Düngung (reduziert): Senf-Mais-Grünroggen-Sudangras-Triticale-Weidelgras-Winterroggen
- mineralischer Düngung: Winterroggen-Weidelgras-Mais-Zuckerrübe-Winterroggen
- mineralischer Düngung (reduziert): Winterroggen-Weidelgras-Mais-Zuckerrübe-Winterroggen
- mineralische Düngung: Mais-Winterroggen
- mineralische Düngung (reduziert): Mais-Winterroggen

Weitere Parameter hinsichtlich Humusbilanzierung

Cmik [t ha⁻¹] 03/2019 – 03/2021

Fazit: Keine Zunahme im SOC (Modellierung, Messwerte, Implementierung von Humusmehrern, organische Applikation) → Wie reliabel ist die Aussagefähigkeit der statischen Koeffizienten der VDLUFA auf Grenzertragsstandorten?

- Chilk Selli fileding (Masse 1 < 0.45 tha 1, Jorgensen 2019)

Ausblick

- Berücksichtigung produktspezifischer Bewertung z.B. Energieertrag, THG-Einsparungspotenziale über Fruchtfolgen benennen und im Vergleich zu fossilen Energieträger ausweisen (TFZ)
- MiLA "online" → Aktuelle Emissionsfaktoren

Ableitung für Praktiker

 Nährstoffbrücken effizient ausnutzen (z.B. Unter-/ Vordruschsaat, geeigneter Umbruchzeitpunkt, Etablierung standortgeeigneter Leguminosen)

Vielen Dank für die Aufmerksamkeit Vielen Dank an BioChem, BfUL sowie FNR

