

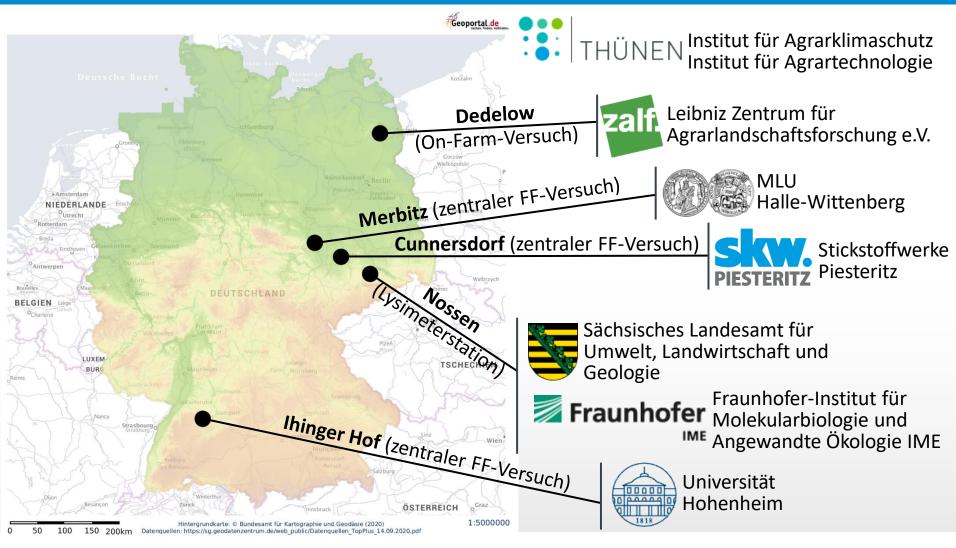
Emissionsminderungspotenzial für gasförmige N-Verbindungen durch Einsatz von Inhibitoren.

Zwischenstand des Projekts "Win-N"

Augustin, J., Döhler, J., Eißner, F., Filipiak, M., Flessa, H., Hoffman, M., Klein, J., Klein, J., Klein, M., Kramp, K., Kreuter, T., Mallast, J., Margraf, V., Monzon Diaz, O., Pacholski, A., Pamperin, H., Rücknagel, J., Ruser, R., Schmid, W., Schuster, C., Skodras, D., Stichnothe, H., Wetzel, S., Zederer, D., Ziehe, D.

Thünen-Institut für Agrartechnologie

Randdaten



Projekttitel: Win-N: Wirkung von inhibiertem
 Ammoniumsulfat-Harnstoff (AS-HS) zur
 Erhöhung der Stickstoff-Nutzungseffizienz und
 Minderung von Ammoniak- und Lachgasemissionen in der Landwirtschaft.

Geldgeber: FNR (Fachagentur Nachwachsende Rohstoffe e.V.).

Versuchsstandorte und Projektpartner

Seite 2 13.07.2023

Matthias Filipiak Vorstellung des Win-N Projekts

Versuchsdesign

- Versuchsdünger: Ammoniumsulfat-Harnstoff (AS-HS)
- **Ureaseinhibitor** (UI): N-2-Nitrophenyl-Phosphorsäuretriamid (NPT)
- **Nitrifikationsinhibitor** (NI): N-((3(5)-Methyl-1H-pyrazol-1-yl)methyl)acetamid (**MPA**)
- Hauptfruchtfolge:

Silomais 2021

Winterweizen 2022

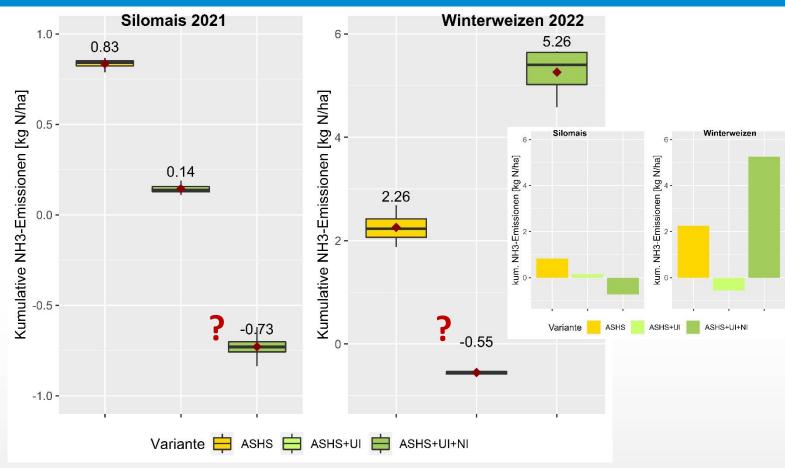
Wintergerste 2023

- Behandlungen:
 - Ungedüngte Kontrolle
 - AS-HS

- AS-HS+UI
- AS-HS+UI+NI

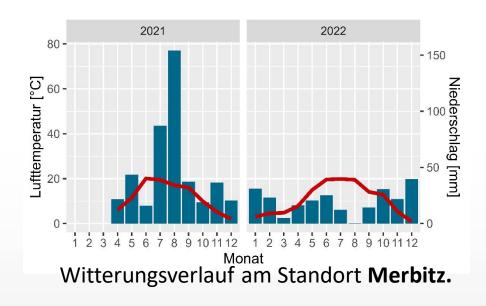
Ammoniakemissionen: Messmethoden

- Calibrated Passive Sampling (Passivsammler + Dräger-Tubes)
- Messdauer: Erste Düngung bis Aussetzen der Emissionen
- Tägliche Leerung der Passivsammler
- Dräger-Messungen täglich zu Kardinalpunkten.


© Jakob Klein, Uni Hohenheim

© Jakob Klein, Uni Hohenheim

Ammoniakemissionen: Vorläufige Ergebnisse



Kumulative NH₃-Emissionen am Standort **Cunnersdorf** im **Silomais** (57 d) und **Winterweizen** (90 d) in den Behandlungen AS-HS, mit Urease- und mit Urease- sowie Nitrifikationsinhibitor.

Ammoniakemissionen: Vorläufige Ergebnisse

Merbitz: Keinerlei NH₃-Emissionen in den Jahren 2021(Silomais) und 2022 (Winterweizen).

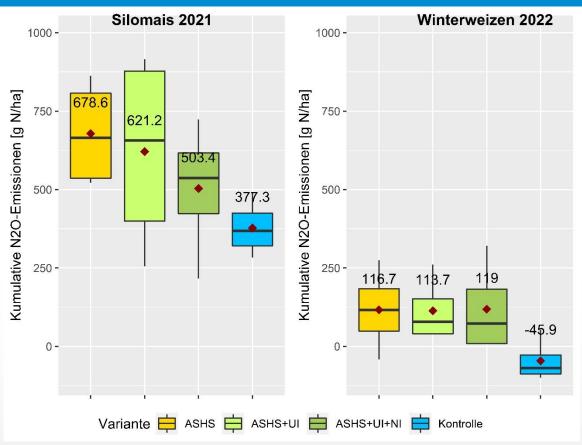
Ihinger Hof: Berechnung und Auswertung noch ausstehend.

Ammoniakemissionen: Win-N-Emissionsfaktoren

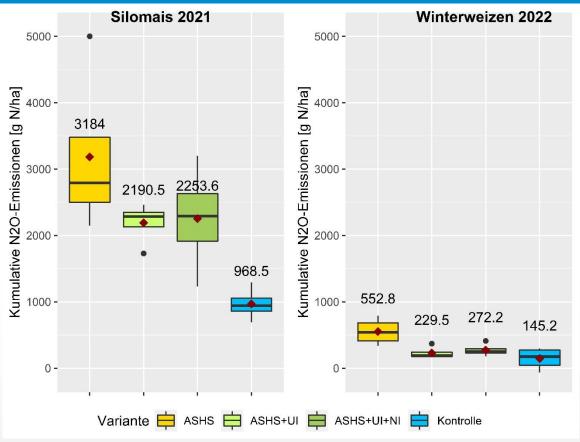
Feldfrucht	Dünge- menge (kg N/ha)	NH3-Verlust absolut (kg N/ha)	Win-N- Emissionsfaktor (kg NH3-N / kg N)	Emissionsfaktor ¹ (kg NH3-N / kg N) (UBA 2013, 2020)
Silomais (2021)	130	0.83 (AS-HS) 0.14 (+UI) -0.73 (+UI+NI)	0.006 0.001 -0.006	0.070 0.025 0.025
Winterweizen (2022)	214	2.26 (AS-HS) -0.55 (+UI) 5.26 (+UI+NI)	0.011 -0.003 0.025	0.070 0.025 0.025

¹Mangels vorliegender Emissionsfaktoren für AS-HS und AS-HS+UI anhand vorliegender EFs für AS, HS und HS+UI sowie Mischungsverhältnis der Versuchsprodukts kalkuliert.

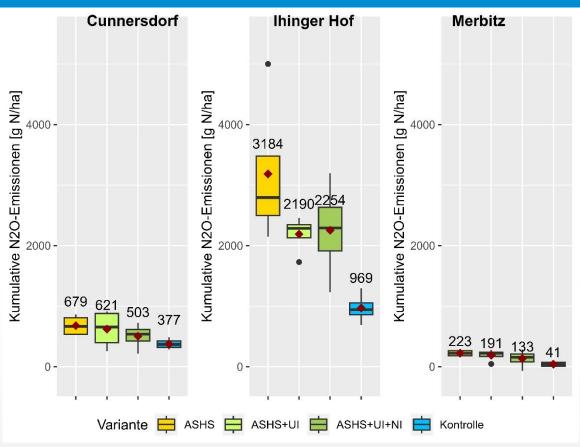
Lachgasemissionen: Messmethoden


- "closed chamber"-Methode
- Ganzjährige Messungen
- Wöchentliche Auflösung + ereignisbasiert
- Verrechnung mittels R-Skripts "gasfluxes" (Fuß, 2022).

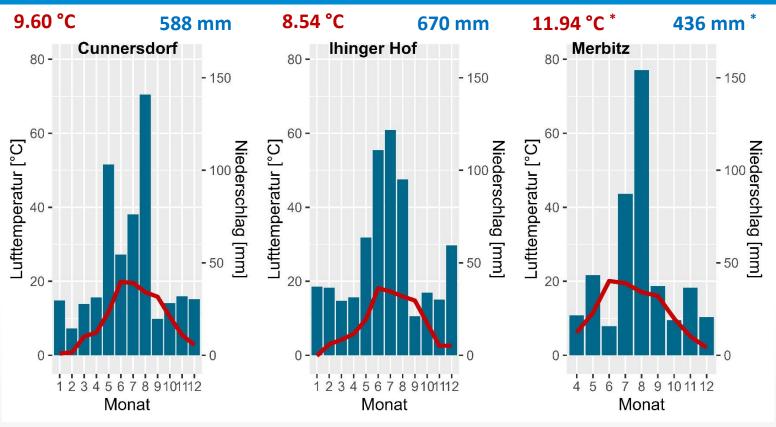
© Jakob Klein, Uni Hohenheim


Lachgasemissionen: Vorläufige Ergebnisse aus Cunnersdorf

Kumulative N₂O-Emissionen am Standort **Cunnersdorf** im **Silomais (161 d)** und **Winterweizen (353 d)** in den Behandlungen a) AS-HS, b) AS-HS+UI, c) AS-HS+UI+NI d) ungedüngte Kontrolle. Bilanzierungszeitraum: Ansaat bis Ansaat Folgefrucht.


Lachgasemissionen: Vorläufige Ergebnisse vom Ihinger Hof

Kumulative N₂O-Emissionen am Standort **Ihinger Hof** im **Silomais (148 d)** und **Winterweizen (360 d)** in den Behandlungen a) AS-HS, b) AS-HS+UI, c) AS-HS+UI+NI d) ungedüngte Kontrolle. Bilanzierungszeitraum: Ansaat bis Ansaat Folgefrucht.


Lachgasemissionen: Gegenüberstellung der Standorte

Kumulative N₂O-Emissionen im **Silomais** (2021) an den Standorten **Cunnersdorf (144 d)**, **Ihinger Hof (139 d)** und **Merbitz (147 d)** in den Behandlungen a) AS-HS, b) AS-HS+UI, c) AS-HS+UI+NI d) ungedüngte Kontrolle. Bilanzierungszeitraum: Ansaat bis Ansaat Folgefrucht.

Witterungsverlauf im Jahr 2021

Monatsmitteltemperatur und monatliche Niederschlagssumme an den Standorten **Cunnersdorf, Ihinger Hof und Merbitz** im Jahr **2021** (Silomais).

* In Merbitz sind Wetterdaten erst ab 01.04.2021 verfügbar.

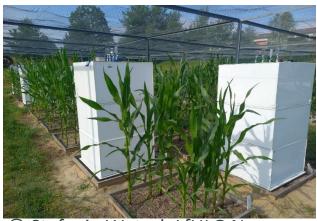
Zwischenfazit

Bisher nachgewiesene emissionsmindernde Wirkung der Inhibitoren:

Standort	Feldfrucht	Ammoniak	Lachgas
Cunnersdorf	Silomais	+	+
	Winterweizen	(+)1	(-) ²
Ihinger Hof	Silomais	Auswertung folgt	+
	Winterweizen	Auswertung folgt	+
Merbitz	Silomais	0	(+)2
	Winterweizen	0	+

¹ Höhere Emissionen in +UI+NI, geringere Emissionen in +UI.

Bisher keine eindeutigen Hinweise auf unerwünschte Wirkungen.



² insgesamt geringes Emissionsniveau.

Ausblick

Nebenwirkungen der Inhibitoren?

- Ökotoxikologische Test der Böden
- Sickerwasseranalysen (Lysimeter):
 - Nitrat, Inhibitoren, Ökotoxikologie.
- Ergänzende Simulationen mit PELMO.
- Minderung gasförmiger Emissionen auf Kosten höherer Auswaschungsverluste?
- Prüfung der Wirkung der **N-Verlustminderung** über die gesamte Fruchtfolge.
- Verifikation N₂O- und NH₃- Emissionsreduktion.
- Ökoeffizienzanalyse.

© Stefanie Wetzel, LfULG Nossen

© Stefanie Wetzel, LfULG Nossen

Vielen Dank für Ihre Aufmerksamkeit!

Kontakt:

Matthias Filipiak Institut für Agrartechnologie **Bundesallee 47** 38116 Braunschweig

Mail: matthias.filipiak@thuenen.de

Web: www.thuenen.de

finanziert durch

MIU Halle-Wittenberg

Universität Hohenheim

Leibniz Zentrum für Agrarlandschaftsforschung e.V.

Sächsisches Landesamt für Umwelt, Landwirtschaft und Geologie

Fraunhofer Fraunhofer-Institut für Molekularbiologie und IME Angewandte Ökologie IME

