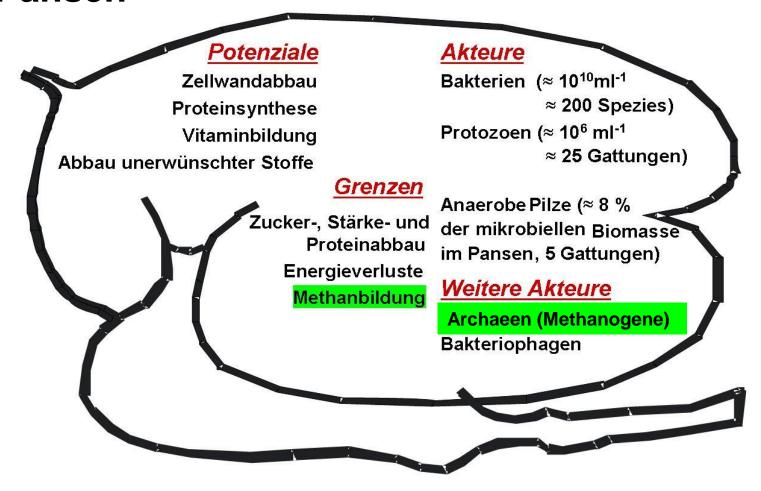


Minderung von Treibhausgasemissionen aus der Landwirtschaft

Emissionsmessungen im Milchviehstall

Karl-Heinz Südekum¹, Friederike Hippenstiel¹, Inga Schiefler², Wolfgang Büscher²


Universität Bonn

¹Institut für Tierwissenschaften

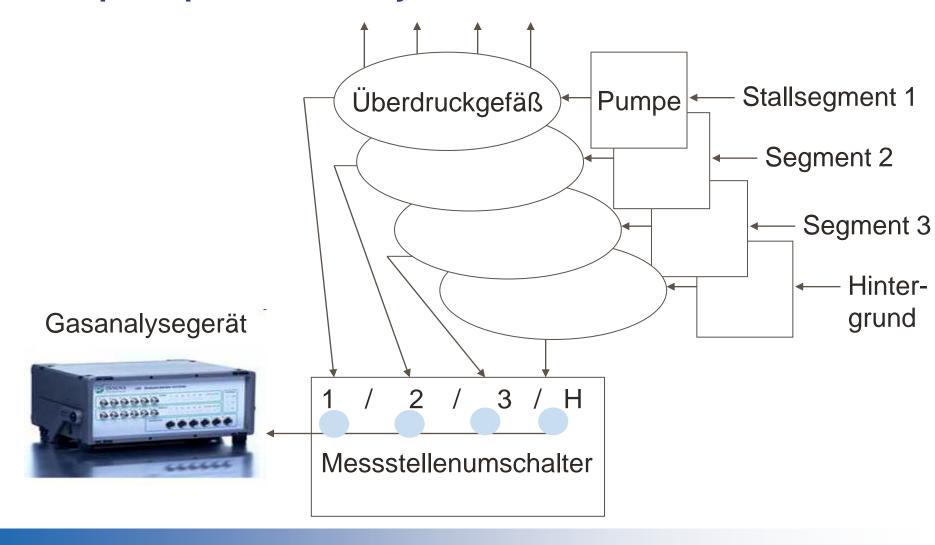
²Institut für Landtechnik

Potenziale, Grenzen und ausgewählter Akteure im Pansen

Einleitung

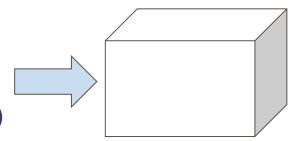
Reduzierungspotenziale

- Höhe der Futteraufnahme
- Futterzusammensetzung
- Kohlenhydrate
- Fette
- Futterzusatzstoffe
- Züchterische Verfahren

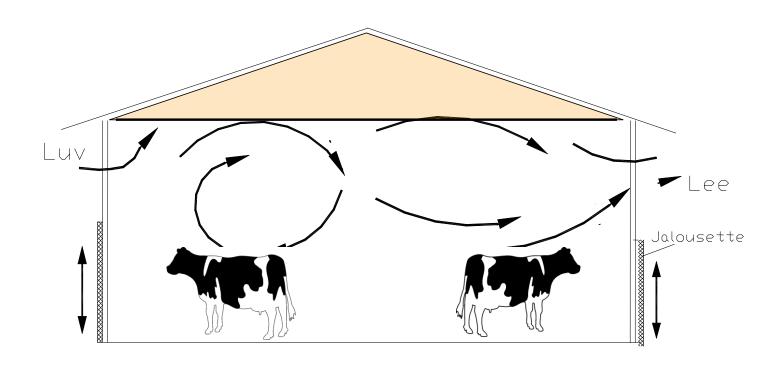

Versuchsüberlegung

1. Langfristige Messung auf Stallebene

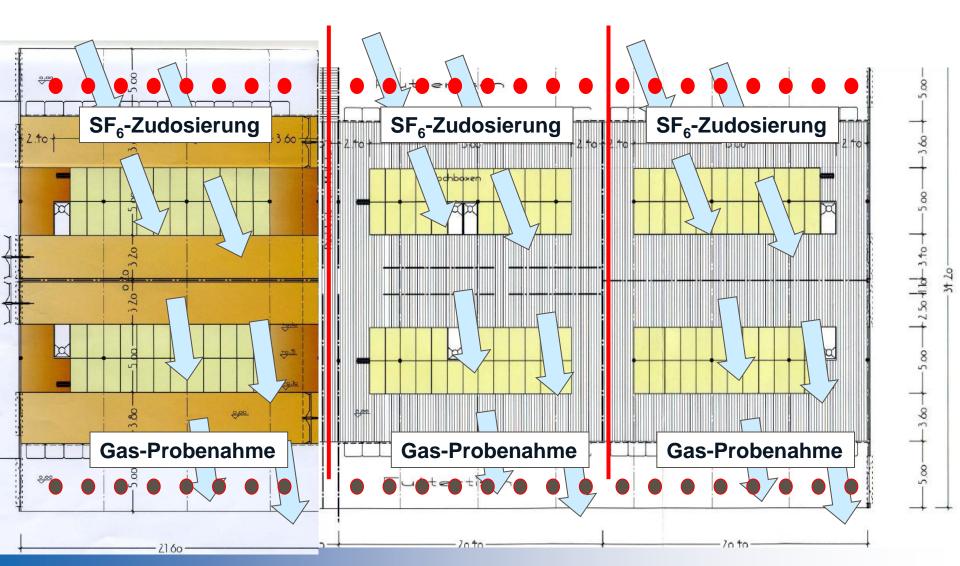
2. Können Methanemissionen aus der Milchviehhaltung durch Variation der Grobfutterart vermindert werden?


Messprinzip der Gasanalyse am Stall Riswick

Volumenstrom-Bestimmung


 Messventilatoren bei Zwangslüftung (Rundkamine besser als Rechteck-Kanäle)

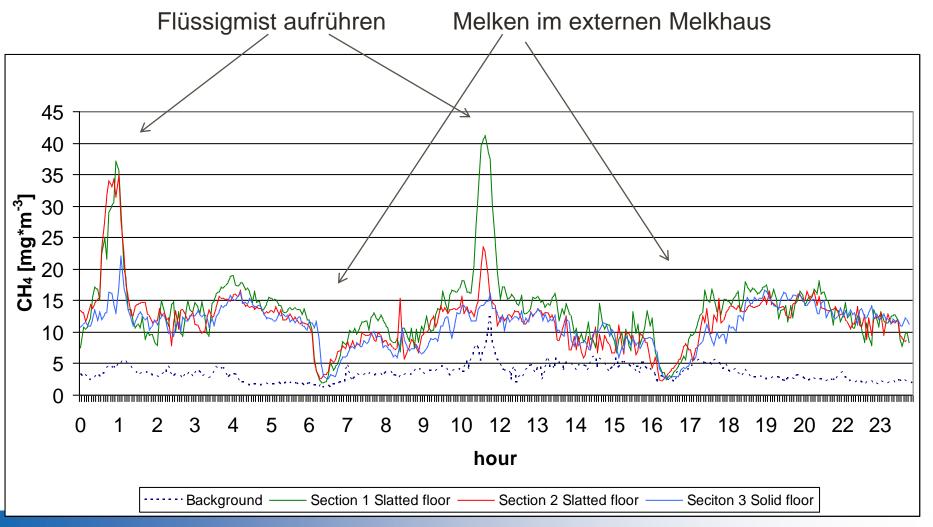
- Massenbilanzen
 (z. B. auf der Basis einer "konstanten" CO₂-Bildung)
- Energiebilanzen
 (z. B. auf der Basis einer "konstanten" Wärmeabgabe)
- Tracer-Gas-Zugabe → Verdünnung in der Abluft (Impulsmethode; Tracer-Ratio-, Konstante Einmischung...)
- Computer-Fluid-Dynamics → Simulationsmodelle (Gebäudedurchströmung, Kompartiment-Methode,..)



Messsituation in typischen Milchvieh-Liegeboxenlaufställen

Funktionsprinzip eines quer-gelüfteten Stalles

Grundriss des Versuchsstalles Riswick



Selbstüberprüfung / Plausibilität

Winter-Tagesverlauf der Methan-Abluftkonzentration

Versuchsplanung

Testlauf

1. Versuchsjahr

Referenzwerte Sommer / Winter / Übergang

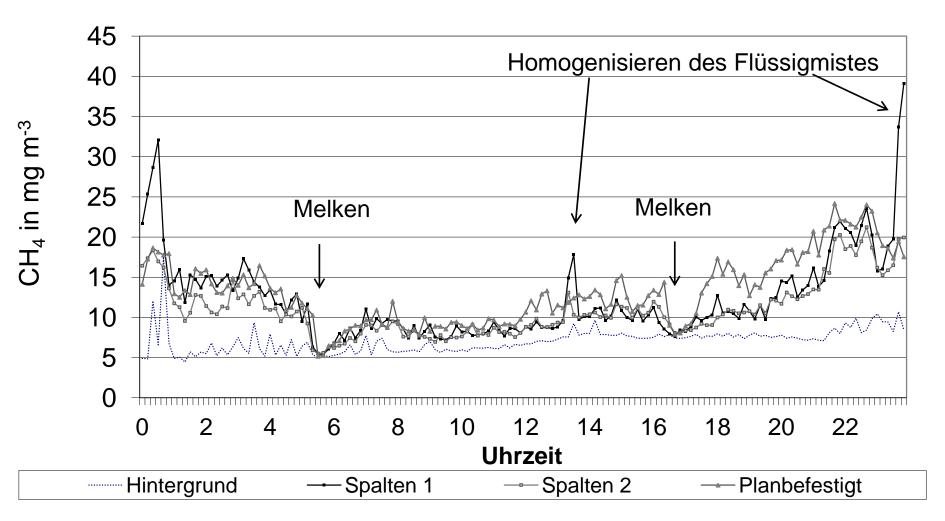
Modell Luftwechselrate

Unterschiede Haltungsverfahren

Emissionsfaktoren Querlüftung

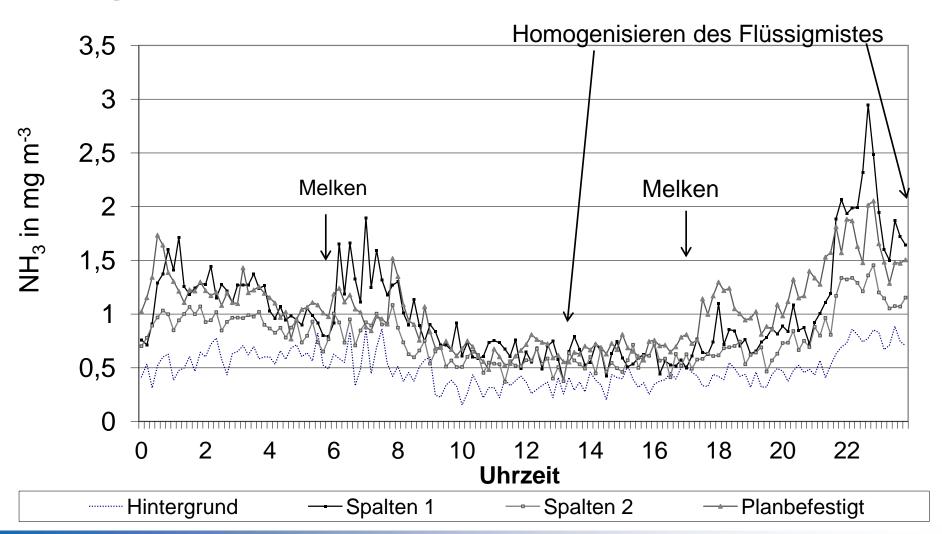
2. Versuchsjahr

Einfluss Grundfuttermittel Mais / Grassilage 3. Versuchsjahr


Minderungsmaßnahmen Fütterung

Minderungsmaßnahmen Stalltechnik

Messperioden von >100 Tagen → Langzeiteffekte



Ergebnisse- Gaskonzentrationen: Methan

Ergebnisse- Gaskonzentrationen: Ammoniak

Fazit

- Luftvolumenstrom ist hoch aber plausibel
- Größte Unterschiede in den Emissionen der beiden Spaltensegmente
- Keine eindeutige Empfehlung für eines der Entmistungssysteme "Planbefestigt" oder "Spaltenboden"
- → das Management ist entscheidend und kann einen größeren Einfluss haben, als die baulichen Gegebenheiten

Ausblick

- Validierung des Gebäudemodells im Folgejahr
- Erweiterung der Betrachtung um das Güllelager
- Messung von Lachgas
- Einfluss der Schieberfrequenz auf Güllemenge und Emissionen
- Zirkulationssystem vs. Lagerung mit geringer Rührfrequenz
- Minderungsmaßnahmen, Güllezusätze

1. Versuchsperiode

Fütterung der gleichen Ration an beide Gruppen

Grassilage

Maissilage

380 g/kg Trockenmasse

380 g/kg Trockenmasse

Gruppe GRAS

Gruppe MAIS

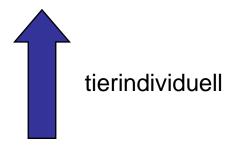
Milchleistungsfutter

- 30 Tage
- 4 Gruppen a 24 Tiere

- Futteraufnahme
- Trockenmassegehalt
- Milchmenge
- Tiergewicht

2. Versuchsperiode

Grassilage betonte Ration Gruppe GRAS


Grassilage

Maissilage

600 g/kg Trockenmasse

110 g/kg Trockenmasse

Gruppe GRAS

Milchleistungsfutter

- 120 Tage
- 2 Gruppen a 24 Tiere

- Futteraufnahme
- Trockenmassegehalt
- Milchmenge
- Tiergewicht

2. Versuchsperiode

Maissilage betonte Ration Gruppe Mais

Grassilage

Maissilage

167 g/kg Trockenmasse

590 g/kg Trockenmasse

Gruppe MAIS

Milchleistungsfutter

- 120 Tage
- 2 Gruppen a 24 Tiere

- Futteraufnahme
- Trockenmassegehalt
- Milchmenge
- Tiergewicht

2. Versuchsperiode

Maissilage betonte Ration Gruppe Mais

Grassilage

Maissilage

- 120 Tage
- 2 Gruppen a 24 Tiere

167 g/k

Gruppenwechsel nach der Hälfte der Versuchsperiode

tierindividuell

Milchleistungsfutter

Datenerfassung

- Futteraufnahme
- Trockenmassegehalt
- Milchmenge
- Tiergewicht

3. Versuchsperiode

Fütterung der gleichen Ration an beide Gruppen

Grassilage

Maissilage

380 g/kg Trockenmasse

viaioonago

380 g/kg Trockenmasse

Gruppe GRAS

Gruppe MAIS

Milchleistungsfutter

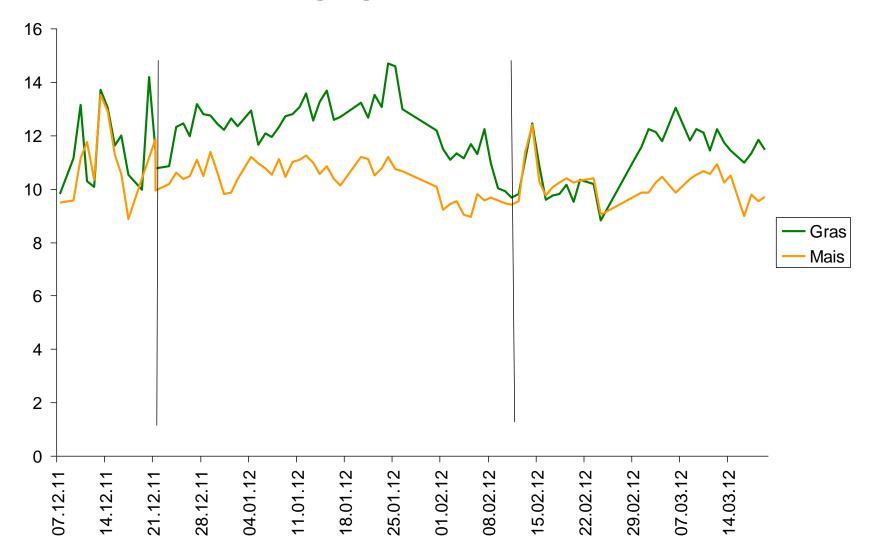
- 30 Tage
- 2 Gruppen a 48 Tiere

- Futteraufnahme
- Trockenmassegehalt
- Milchmenge
- Tiergewicht

Annahme

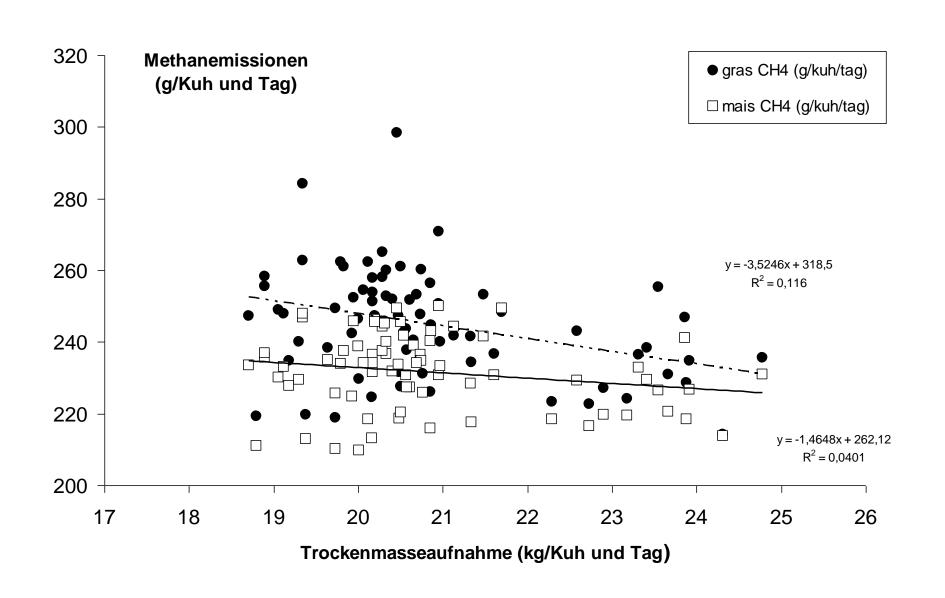
Gruppe GRAS

hat ein höheres Methanbildungspotenzial als


Gruppe MAIS

Gründe:

- Höhere Faseranteile in der Grassilage (ADF, NDF)
- Höhere Grobfutteraufnahme und niedrigere Kraftfutteraufnahme bei Gruppe GRAS



Methanemissionen (g/kg Trockenmasseaufnahme)

Ergebnisse

Ergebnisse aus anderen Studien

Maissilage betonte Ration

Grassilage betonte Rationen

	American data ^a		United Kingdom data					
	Timerre	Lactating cows	$ m ARINI^{b}$					
Item	All cows		Exp. 1	Exp. 2	Exp. 3	Exp. 4	All. Exp.	Hurley ^c
No. observations	32	19	16	16	16	15	63	45
Milk yield, kg/d ^d	-	21.2 ± 9.2	30.8 ± 4.2	8.9 ± 1.1	30.8 ± 3.0	22.9 ± 3.6	23.5 ± 3.1	30.5 ± 3.8
Forage, % of DMI ^d	69 ± 2.7	54 ± 2.0	49.0 ± 2.8	100 ± 0.0	$48~\pm~4.5$	57 ± 5.7	63.53 ± 0.2	_
DMI, kg/d ^d	12.4 ± 4.1	149 ± 24	16.4 ± 0.9	8.8 ± 0.5	16.8 ± 1.6	14.2 ± 1.4	14.1 ± 3.4	17.0 ± 2.1
Methane, MJ/d ^d	12.42 ± 3.8	14.24 ± 3.6	26.94 ± 1.7	10.51 ± 1.0	23.54 ± 2.8	22.11 ± 3.3	20.75 ± 6.7	21.76 ± 2.5

^aSummarized by Benchaar et al. (1998).

^bAgricultural Research Institute of Northern Ireland (Unsworth et al., 1994).

^cCammell et al. (1986).

^dMean ± standard deviation.

Reduzierungspotenziale

Verbesserung der tierischen Produktivität Verbesserung der Futterverwertungseffizienz Rationsgestaltung / Fütterung	
Trockenmasseaufnahme erhöhen Konzentratanteil der Ration erhöhen Faserkonzentrat vs. Stärkekonzentrat Schnell vs. langsam abbaubare Stärke Reifegrad des Futters Futterart (Leguminosen/Gräser) Futterkonservierung (Heu vs. Silage) Futterverarbeitung	-9 bis -23 % -40 % -22 % -17 % -15 % -21 % -28 %

Weitere Fütterungsversuche???

